Bayesian Auxiliary Variable Models for Binary and Multinomial Regression
نویسندگان
چکیده
In this paper we discuss auxiliary variable approaches to Bayesian binary and multinomial regression. These approaches are ideally suited to automated Markov chain Monte Carlo simulation. In the first part we describe a simple technique using joint updating that improves the performance of the conventional probit regression algorithm. In the second part we discuss auxiliary variable methods for inference in Bayesian logistic regression, including covariate set uncertainty. Finally, we show how the logistic method is easily extended to multinomial regression models. All of the algorithms are fully automatic with no user set parameters and no necessary Metropolis-Hastings accept/reject steps.
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملCS535D Project: Bayesian Logistic Regression through Auxiliary Variables
This project deals with the estimation of Logistic Regression parameters. We first review the binary logistic regression model and the multinomial extension, including standard MAP parameter estimation with a Gaussian prior. We then turn to the case of Bayesian Logistic Regression under this same prior. We review the cannonical approach of performing Bayesian Probit Regression through auxiliary...
متن کاملپایش پروفایل با پاسخ چند رسته ای اسمی
In certain statistical process control applications, quality of a process or product can be characterized by a function between response variable and one or more independent variables. This function commonly referred to as profile. Response variable can be continuous or discrete. All of the research assumes that the response variable is continuous. Whereas, some of the potential applications of...
متن کاملWorking Paper Series Categorical Data Categorical Data
Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...
متن کاملImproved auxiliary mixture sampling for hierarchical models of non-Gaussian data
The article proposes an improved method of auxiliary mixture sampling for count data, binomial data and multinomial data. In constrast to previously proposed samplers the method uses a limited number of latent variables per observation, independent of the intensity of the underlying Poisson process in the case of count data, or of the number of experiments in the case of binomial and multinomia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005